Endosulfan

Jane Curren
EHS 201
Fall 2005

Endosulfan

- Background Information
- Fate in the Environment

- Environmental Toxicity
- Human Toxicity

What is Endosulfan?

Endosulfan is a chlorinated pesticide used on crops like:

- Coffee
- Fruits
- Cereals/Grains
- Vegetables
- Cotton

Chemical Properties of Technical Grade Endosulfan

Endosulfan I (
$$C_9H_6Cl_6O_3S$$
)

- Color: yellow or brown
- MP: 70-80°C
- Water Solubility:.32mg/L

Overview of Use

- Endosulfan was first registered as a pesticide in the USA in 1954.
- 94 endosulfan products are currently registered.
- 1.38 million lbs or endosulfan are estimated to be used annually in the USA.
- Considered Priority Pollutantby the EPA

Instructor Dr. Eckhert EHS201 UCLA 2005

Overview of Use

- Endosulfan is a broad spectrum contact insecticide that controls sucking, chewing, and boring insects.
- Other pesticides can be used with endosulfan.
 - It can be used with other pesticides and may be made in formulations with malathion, parathion, oxine-copper among others.

Fate in the Environment

Chemical Reactions and Reaction Products

■ Transport in the Environment

Important Forms of Endosulfan

- Parent Isomers:
 Endosulfan I(α) and
 Endosulfan II(β)
- Degradation
 Products:
 Endosulfan Sulfate
 and Endosulfan Diol

Endosulfan I

- Toxic: 3 times more toxic than endosulfan
 II or endosulfan sulfate.
- Least persistent form

Endosulfan II

- Toxic
- Slightly more persistent that endosulfan I

Endosulfan Sulfate Endosulfan Diol

- Toxic
- Main product in aerobic soils
- Formed by biological oxidation
- Much more persistent in the environment than either of its parents isomers

- Non-Toxic
- Main product in anaerobic flooded soils
- Formed by chemical or biological hydrolysis

Environmental Transport

Major Routes Off Field For Endosulfan

- Volatilization
- Spray Drift
- Runoff
- Degradation

Importance of Routes

- Spray Drift/Volatilization:
 - These pathways will contribute to chronic low levels of endosulfan in waterways during the growing season.
- Runoff:
 - Most endosulfan in runoff is sorbed to sediment.
 - This pathway will cause temporarily high, potentially acutely toxic levels of endosulfan in waterways after rain events.

Degradation

Change in constituents of total endosulfan in cotton leaves over time.

- After application onto a cotton field endosulfan sulfate soon becomes the main form present.
- Endosulfan sulfate comprises 60-70% of total endosulfan residues in soil.
- Rate of degradation is dependent on environmental conditions.

Environmental Toxicity

■ Toxic Effects

Routes of Toxicity

Regulations/Mitigation

Toxic Effects

- Relatively non-toxic to beneficial insects like parasitic wasps, lady bug beetles, and some mites and only moderately toxic to bees.
- Reproductive and developmental effects have been observed in non-target organisms.
- The primary concern for all three toxic forms is on the local scale.

Toxic Effects

- Aquatic fauna are particularly sensitive to endosulfan.
 - Fish are particularly sensitive, some experiencing acute toxicity at 0.3μg/L.
 - Zooplankton show inhibited growth and reproduction in the presence of endosulfan.
 - Such impacts could potentially have far reaching effects in the ecosystem.

Route of Toxicity

 Adsorption through the water column is the main route to toxicity.

Bioaccumulation

- Unlike other chlorinated pesticides bioaccumulation is not an issue with endosulfan.
- Endosulfan has a low K_{ow} and can be readily excreted from the body.
- Fish tissue concentrations will reach a plateau that is dependent on water concentration. Once removed from contaminated waters tissue concentrations quickly dissipate.

Regulations

- EPA 1991: Labels need to incorporate 300ft spray drift between treated areas and water bodies
- Priority Pollutant under the Clean Water Act.
 - $CMC = 0.22 \mu g/L$
 - $CCC = 0.056 \mu g/L$

Mitigation

- Differences in watershed characteristics and the intensity of pesticide use are the best indicators for amount of pesticide found in rivers, not amount of land under agricultural use.
- Important Factors
 - Slope
 - Size and Character of Buffer
 - Time since application
 - Type of Crop
 - Canopy Cover
 - Soil Type
 - Chemical Nature of the Pesticide

Mitigation

Ponding

 Capturing runoff in ponds before it is released into waterways gives endosulfan more time to degrade

Barriers

- Tall barriers can be used to minimized spray drift
- Dense barriers can be used to minimize runoff

Instructor Dr. Eckhert EHS201 UCLA 2005

Human Toxicity

Health Effects/Toxicology

Exposure through Food and Drinking Water

Occupational Risk

Health Effects

Endosulfan is a Class I Pesticide

Acute

- Seizures
- Death
- More . . .

Chronic

- Not much is known
- Liver Damage
- Reduced weight gain
- Possible teratagen

Acute Health Effects

Cardiovascular	Arrhythmias
Neurological	Convulsions, Confusion, Loss of Coordination
Gastrointestinal	Nausea, Vomiting, Diarrhea
Renal	Damage
Dermatological	Irritation
Eye	Redness, Pain
Pregnancy	Fetal Death

Toxicology of Endosulfan

Neurotoxin

- Alters electrophysiological and associated enzymatic properties of nerve cell membranes. (changes kinetics of Na⁺ and K⁺ ion flow through membrane)
- Antagonizes action of neurotransmitter gammaaminobutyric acid(GABA). (causes uncontrolled excitation of neuron)

Lethal Dose

Oral	$LD_{50} = 30 - 82 \text{mg/kg}$
Inhalation	$LC_{50} = 0.16 - 0.5 \text{mg/L}$
Dermal	$LD_{50} = 2g/kg$

Exposure Limits

Route of Exposure	Duration of Exposure	NOEL mg/kg/day
Dermal	1 day to several months	12
Inhalation	1 day to several months	0.2

Metabolism and Elimination

- Most metabolites are yet to be determined.
- Endosulfan I and II, endosulfan sulfate, and endosulfan diol are eliminated via feces.
- Only endosulfan diol is eliminated via urine.

Metabolism and Elimination

- Elimination Half Life(Biphasic)
 - 6-14 hrs
 - 33-68 hrs
- Elimination is essentially complete in 1-2 days.

Dietary Exposure

Chronic

- Risk below EPA level of concern.
- NOEL: 0.6mg/kg/day
- LOEL: 2.9mg/kg/day

Acute

- Risk below EPA level of concern for adults.
- Small risk for children 1-6 years
 - Mostly associated with succulent beans and peas.
- NOEL: 1.5mg/kg/day
- LOEL: 3mg/kg/day

Drinking Water Exposure

- Limited water monitoring data was available, so models were used to estimate risk. Assessment is considered to be unrefined.
- Estimated endosulfan levels in water
 - Ground Water
 - Low levels in areas were soil is acidic to neutral, highly permeable and the GW is shallow
 - Surface Waters
 - Acute: $4.49 23.86 \,\mu\text{g/L}$
 - Chronic: $0.53 1.5 \,\mu g/L$

Drinking Water Exposure

- Drinking water levels are below the level of concern for the EPA.
 - Could increase risk associated with dietary exposure in children 1-6.
- EPA

Criteria Concentration = $75\mu g/L$

Occupational Risk

- Routes of Exposure
 - Mixing
 - Loading
 - Applying
 - Endosulfan is applied by handheld devices, tractors, and airplanes
 - Post-Application

Factors that Effect Occupational Risk

- Types of engineering controls used.
 - Closed Cab Tractors
 - Closed Mixing and Loading Systems

- Gloves
- Coveralls Over Cloths
- Respirators
- Chemical Safe footwear
- Headgear

Factors that Effect Occupational Risk

- Time Since Application
 - Most formulations list Restricted Entry Interval(REI) of 24 hours.
 - Form of Pesticide Used
 - Wettable powders are generally have a greater post application risk than emulsifiable concentrate
 - Crop type will effect the time before it is safe to work in the fields.
 - Some crop/formulation combinations make the field unsafe for work for up to 30 days.

Factors that Effect Occupational Risk

- Duration of Exposure and Amount of Pesticide Handled
- Individual Characteristics
 - Individuals and species with high protein diets tend to be less sensitive to endosulfan exposure.
 - Individuals with higher body weight are at less risk

Regulations

- EPA 2000: Label removed for all residential uses
- Number of possible applications per season limited(1-5)
- OSHA
 - PEL 0.1mg/m³
- ACGIH
 - TLV 0.1mg/m³
- NIOSH
 - REL 0.1mg/m³

Replacement Products

- No plans to phase out endosulfan are in place, but there are other options:
 - Other pesticides
 - Organic Farming
 - Integrated pest management

Summary

Background:

- Endosulfan in a highly toxic broad spectrum insecticide, commonly used in the USA.
- Fate in the Environment
 - Endosulfan travels from the field to water bodies primarily via volatilization and runoff.
- Environmental Toxicity
 - Bioaccumulation is not a major factor in toxicity to nontarget organisms.
 - Aquatic species are generally most vulnerable to endosulfan toxicity.
 - Mitigation through ponding and creating barriers.

Summary

Human Toxicity

- Endosulfan is a neurotoxin that is mainly a concern at acute doses.
- Ingestion through drinking water and food is not considered a major risk.
- Those most at risk are agricultural workers, but risk can be reduced through the use of personal protective equipment and engineering controls.

References

http://www.epa.gov/oppsrrd1/REDs/endosulfan red.pdf

http://www.epa.gov/ost/pc/ambienttwqc/endosulfan80.pdf

http://www.inchem.org/documents/pims/chemical/pim576.htm

http://www.osha.gov

http://extoxnet.orst.edu/pips/endosulf.htm

- Peterson, S. M. and G. E. Batley. 1993. The Fate of Endosulfan in Aquatic Ecosystems. Environmental Pollution 82: 143-152.
- Kennedy, I. R., F. Sanchez-Bayo, S. W. Kimber, L. Hugo, and N. Ahmad. 2001. Off-Site Movement of Endosulfan from Irrigated Cotton in New South Wales. Journal of Environmental Quality 30: 683-696.
- DeLorenzo, M. E., L. A. Taylor, S. A. Lund, P. L. Pennington, E. D. Strozier, and M. H. Fulton. 2002. Toxicity and Bioconcentration of the Agricultural Pesticide Endosulfan in Phytoplankton and Zooplankton. Archives of Environmental Contamination and Toxicology 42: 173-181.
- Naqvi, Syed M. and Chetana Vaishnavi. 1993. Bioaccumulation Potential and Toxicity Of Endosulfan Insecticide to Non-Target Animals. Comp. of Biochemical Physiology 105C(3): 347-361.